Primeira página
/
Matemática
/
Select the correct choice below and fill in any answer box(es) within your choice. (Simplify your answer. Use integers or fractions for any numbers in expressions., A. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,yneq 0,yneq square , and no numbers must be excluded for x. C. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square ,yneq 0 B. (frac (7)/(x)+(8)/(y))(8x+7y)=square . and no numbers must be excluded. D. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square , and no numbers must be excluded for y.

Pergunta

Select the correct choice below and fill in any answer box(es) within your choice.
(Simplify your answer. Use integers or fractions for any numbers in expressions.,
A. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,yneq 0,yneq square ,
and no numbers must be excluded for x.
C. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square ,yneq 0
B. (frac (7)/(x)+(8)/(y))(8x+7y)=square .
and no numbers must be excluded.
D. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square ,
and no numbers must be excluded for y.

Select the correct choice below and fill in any answer box(es) within your choice. (Simplify your answer. Use integers or fractions for any numbers in expressions., A. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,yneq 0,yneq square , and no numbers must be excluded for x. C. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square ,yneq 0 B. (frac (7)/(x)+(8)/(y))(8x+7y)=square . and no numbers must be excluded. D. (frac (7)/(x)+(8)/(y))(8x+7y)=square ,xneq 0,xneq square , and no numbers must be excluded for y.

Solução

expert verifiedVerification of experts
4.6210 Voting
avatar
Alice MariaMestre · Tutor por 5 anos

Responder

To solve the problem, we need to simplify the given expression and determine any restrictions on the variables \( x \) and \( y \).<br /><br />The expression is:<br /><br />\[<br />\frac{\frac{7}{x} + \frac{8}{y}}{8x + 7y}<br />\]<br /><br />First, let's find a common denominator for the terms in the numerator:<br /><br />\[<br />\frac{7}{x} + \frac{8}{y} = \frac{7y}{xy} + \frac{8x}{xy} = \frac{7y + 8x}{xy}<br />\]<br /><br />Now substitute this back into the original expression:<br /><br />\[<br />\frac{\frac{7y + 8x}{xy}}{8x + 7y} = \frac{7y + 8x}{xy(8x + 7y)}<br />\]<br /><br />This simplifies to:<br /><br />\[<br />\frac{1}{xy}<br />\]<br /><br />Now, let's consider the restrictions:<br /><br />1. Since \( \frac{7}{x} \) and \( \frac{8}{y} \) are part of the expression, neither \( x \) nor \( y \) can be zero. Therefore, \( x \neq 0 \) and \( y \neq 0 \).<br /><br />2. The denominator \( 8x + 7y \) should not be zero to avoid division by zero. However, since the simplified expression does not include \( 8x + 7y \) in the denominator, there are no additional restrictions from this term.<br /><br />Based on these considerations, the correct choice is:<br /><br />C. \( \frac{\frac{7}{x}+\frac{8}{y}}{8 x+7 y}= \frac{1}{xy} \), \( x \neq 0 \), \( y \neq 0 \).
Clique para avaliar: