Primeira página
/
Matemática
/
14. Factor out the GCF of the terms of each polynomial. x^3+5x^2-22x -16y^6+28y^4-20y^3

Pergunta

14. Factor out the GCF of the terms of each polynomial.
x^3+5x^2-22x
-16y^6+28y^4-20y^3

14. Factor out the GCF of the terms of each polynomial. x^3+5x^2-22x -16y^6+28y^4-20y^3

Solução

expert verifiedVerification of experts
4.0236 Voting
avatar
MoisésMestre · Tutor por 5 anos

Responder

To factor out the greatest common factor (GCF) of the terms of each polynomial, we need to identify the largest factor that divides each term in the polynomial.<br /><br />For the first polynomial $x^{3}+5x^{2}-22x$:<br />The GCF of the terms is $x$, as it is the largest factor that divides each term.<br />Factoring out the GCF, we get:<br />$x(x^{2}+5x-22)$<br /><br />For the second polynomial $-16y^{6}+28y^{4}-20y^{3}$:<br />The GCF of the terms is $-4y^{3}$, as it is the largest factor that divides each term.<br />Factoring out the GCF, we get:<br />$-4y^{3}(4y^{3}-7y-5)$<br /><br />Therefore, the factored forms of the given polynomials are:<br />$x(x^{2}+5x-22)$<br />$-4y^{3}(4y^{3}-7y-5)$
Clique para avaliar: