Primeira página
/
Matemática
/
Simplify each radical expressing 8. 5sqrt (150)

Pergunta

Simplify each radical expressing
8. 5sqrt (150)

Simplify each radical expressing 8. 5sqrt (150)

Solução

expert verifiedVerification of experts
4.6271 Voting
avatar
GaelProfissional · Tutor por 6 anos

Responder

To simplify the radical expression \(5\sqrt{150}\), we need to factor the number under the square root and then simplify the radical.<br /><br />First, let's factor 150:<br />\[ 150 = 2 \times 3 \times 5^2 \]<br /><br />Now, we can rewrite the radical expression:<br />\[ 5\sqrt{150} = 5\sqrt{2 \times 3 \times 5^2} \]<br /><br />Next, we can use the property of square roots that states \(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\):<br />\[ 5\sqrt{2 \times 3 \times 5^2} = 5 \times \sqrt{2 \times 3} \times \sqrt{5^2} \]<br /><br />We know that \(\sqrt{5^2} = 5\), so we can simplify further:<br />\[ 5 \times \sqrt{2 \times 3} \times 5 = 5 \times 5 \times \sqrt{6} = 25\sqrt{6} \]<br /><br />Therefore, the simplified form of \(5\sqrt{150}\) is:<br />\[ 5\sqrt{150} = 25\sqrt{6} \]
Clique para avaliar: