Pergunta

Given that g(x)=3x^2-4x+3 find each of the following. b) g(-1) c) g(2) d) g(-x) e) g(1-t) a) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. g(0)=square (Simplify your answer.) B. The value g(0) does not exist. b) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A q(-1)=square (Simplify your answer.)
Solução

4.1263 Voting

WilmaMestre · Tutor por 5 anos
Responder
a) To find $g(0)$, we substitute $x=0$ into the function $g(x)$.<br /><br />$g(0)=3(0)^{2}-4(0)+3=3$<br /><br />So, the correct choice is A. $g(0)=3$.<br /><br />b) To find $g(-1)$, we substitute $x=-1$ into the function $g(x)$.<br /><br />$g(-1)=3(-1)^{2}-4(-1)+3=3+4+3=10$<br /><br />So, the correct choice is A. $g(-1)=10$.<br /><br />c) To find $g(2)$, we substitute $x=2$ into the function $g(x)$.<br /><br />$g(2)=3(2)^{2}-4(2)+3=12-8+3=7$<br /><br />So, $g(2)=7$.<br /><br />d) To find $g(-x)$, we substitute $x=-x$ into the function $g(x)$.<br /><br />$g(-x)=3(-x)^{2}-4(-x)+3=3x^{2}+4x+3$<br /><br />So, $g(-x)=3x^{2}+4x+3$.<br /><br />e) To find $g(1-t)$, we substitute $x=1-t$ into the function $g(x)$.<br /><br />$g(1-t)=3(1-t)^{2}-4(1-t)+3=3(1-2t+t^{2})-4+4t+3=3-6t+3t^{2}-4+4t+3=3t^{2}-2t+2$<br /><br />So, $g(1-t)=3t^{2}-2t+2$.
Clique para avaliar: