Primeira página
/
Matemática
/
4. Practice completing the table of values for the given square root Function: y=sqrt( )(x+3) mathbf(x) & -3 & -2 & 0 & 4 & 9 mathbf(y) & & & & &

Pergunta

4. Practice completing the table of values for the given square root Function: y=sqrt( )(x+3) 

 mathbf(x) & -3 & -2 & 0 & 4 & 9 
 mathbf(y) & & & & &

4. Practice completing the table of values for the given square root Function: y=sqrt( )(x+3) mathbf(x) & -3 & -2 & 0 & 4 & 9 mathbf(y) & & & & &

Solução

expert verifiedVerification of experts
4.7233 Voting
avatar
GilbertoMestre · Tutor por 5 anos

Responder

### \begin{array}{|c|c|c|c|c|c|}<br\ />\hline\ x\ \ &\ -3\ &\ -2\ &\ 0\ &\ 4\ &\ 9\ \\<br\ />\hline\ y\ \ &\ 0\ &\ 1\ &\ \sqrt{3}\ &\ \sqrt{7}\ &\ 2\sqrt{3}\ \\<br\ />\hline<br\ />\end{array}

Explicação

## Step 1: Understand the Function<br />### The function given is \( y = \sqrt{x+3} \). This means for each value of \( x \), you need to calculate \( y \) by taking the square root of \( x + 3 \).<br /><br />## Step 2: Calculate \( y \) for Each \( x \)<br />### - For \( x = -3 \): <br />\[<br />y = \sqrt{-3 + 3} = \sqrt{0} = 0<br />\]<br />### - For \( x = -2 \):<br />\[<br />y = \sqrt{-2 + 3} = \sqrt{1} = 1<br />\]<br />### - For \( x = 0 \):<br />\[<br />y = \sqrt{0 + 3} = \sqrt{3}<br />\]<br />### - For \( x = 4 \):<br />\[<br />y = \sqrt{4 + 3} = \sqrt{7}<br />\]<br />### - For \( x = 9 \):<br />\[<br />y = \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}<br />\]<br /><br />## Step 3: Fill in the Table<br />### Use the calculated values to fill in the table under the \( y \) row.
Clique para avaliar: