Primeira página
/
Matemática
/
Solve the following problem n=25;i=0.047;PMT= 173;PV=? PV= square (Round to two decimal places.)

Pergunta

Solve the following problem
n=25;i=0.047;PMT= 173;PV=?
PV= square  (Round to two decimal places.)

Solve the following problem n=25;i=0.047;PMT= 173;PV=? PV= square (Round to two decimal places.)

Solução

expert verifiedVerification of experts
4.2279 Voting
avatar
EleneMestre · Tutor por 5 anos

Responder

To solve for the present value (PV) in this problem, we can use the formula for the present value of an ordinary annuity:<br /><br />\[ PV = PMT \times \left( \frac{1 - (1 + i)^{-n}}{i} \right) \]<br /><br />Given:<br />- \( n = 25 \)<br />- \( i = 0.047 \)<br />- \( PMT = \$173 \)<br /><br />Let's plug these values into the formula:<br /><br />\[ PV = 173 \times \left( \frac{1 - (1 + 0.047)^{-25}}{0.047} \right) \]<br /><br />First, calculate \( (1 + 0.047)^{-25} \):<br /><br />\[ (1 + 0.047)^{-25} = (1.047)^{-25} \approx 0.297 \]<br /><br />Next, calculate \( 1 - 0.297 \):<br /><br />\[ 1 - 0.297 = 0.703 \]<br /><br />Now, divide by the interest rate \( i \):<br /><br />\[ \frac{0.703}{0.047} \approx 14.957 \]<br /><br />Finally, multiply by the payment amount \( PMT \):<br /><br />\[ PV = 173 \times 14.957 \approx 2591.31 \]<br /><br />So, the present value \( PV \) is approximately:<br /><br />\[ PV = \$2591.31 \]<br /><br />(Rounded to two decimal places.)
Clique para avaliar: