Primeira página
/
Matemática
/
In Delta XYZ,mangle X=42^circ and mangle Y=127^circ . Which statement about the sides of Delta XYZ must be true? Answer ZXlt YZlt XY YZlt ZXlt XY YZlt XYlt ZX XYlt ZXlt YZ ZXlt XYlt YZ XYlt YZlt ZX

Pergunta

In Delta XYZ,mangle X=42^circ  and mangle Y=127^circ  . Which statement about the sides of Delta XYZ must be true?
Answer
ZXlt YZlt XY
YZlt ZXlt XY
YZlt XYlt ZX
XYlt ZXlt YZ
ZXlt XYlt YZ
XYlt YZlt ZX

In Delta XYZ,mangle X=42^circ and mangle Y=127^circ . Which statement about the sides of Delta XYZ must be true? Answer ZXlt YZlt XY YZlt ZXlt XY YZlt XYlt ZX XYlt ZXlt YZ ZXlt XYlt YZ XYlt YZlt ZX

Solução

expert verifiedVerification of experts
4.4178 Voting
avatar
LucianaMestre · Tutor por 5 anos

Responder

To determine the relationship between the sides of triangle XYZ, we need to consider the angles given.<br /><br />Given:<br />- m∠X = 42°<br />- m∠Y = 127°<br /><br />Step 1: Calculate m∠Z using the fact that the sum of angles in a triangle is 180°.<br />m∠Z = 180° - m∠X - m∠Y<br />m∠Z = 180° - 42° - 127°<br />m∠Z = 11°<br /><br />Step 2: Compare the angles to determine the order of the sides.<br />Since the largest angle is opposite the longest side, and the smallest angle is opposite the shortest side, we can conclude that:<br />m∠Y > m∠X > m∠Z<br /><br />Therefore, the correct statement about the sides of triangle XYZ is:<br />$XY\lt YZ\lt ZX$
Clique para avaliar: