Primeira página
/
Matemática
/
Se um conjunto A, possui 10 elementos quantos subconjuntos próprios possui conjunto A? a. 1023 b. 512 c. 1024 d. 19 e. 256

Pergunta

Se um conjunto A, possui 10 elementos quantos subconjuntos próprios possui
conjunto A?
a. 1023
b. 512
c. 1024
d. 19
e. 256

Se um conjunto A, possui 10 elementos quantos subconjuntos próprios possui conjunto A? a. 1023 b. 512 c. 1024 d. 19 e. 256

Solução

expert verifiedVerification of experts
4.3280 Voting
avatar
BerthaMestre · Tutor por 5 anos

Responder

The set A has 1023 proper subsets.

Explicação

## Step 1<br />The problem is asking for the number of proper subsets of a set A, which has 10 elements. A proper subset is a subset that is not identical to the original set, meaning it can contain fewer elements than the original set, but not more.<br /><br />## Step 2<br />The formula to calculate the number of proper subsets of a set is \(2^n - 1\), where \(n\) is the number of elements in the set. This formula is derived from the fact that each element in the set can either be included or not included in a subset, giving us 2 choices for each element. However, we subtract 1 from the total to exclude the set itself, which is a subset but not a proper subset.<br /><br />## Step 3<br />In this case, the set A has 10 elements, so \(n = 10\). Substituting this into the formula, we get \(2^{10} - 1 = 1024 - 1 = 1023\).
Clique para avaliar: