Primeira página
/
Matemática
/
. If f(x)=1-x which value is equivalent to vert f(i)vert o 1 sqrt (2) sqrt (-1)

Pergunta

. If f(x)=1-x which value is equivalent to vert f(i)vert 
o
1
sqrt (2)
sqrt (-1)

. If f(x)=1-x which value is equivalent to vert f(i)vert o 1 sqrt (2) sqrt (-1)

Solução

expert verifiedVerification of experts
4.0317 Voting
avatar
ValdirProfissional · Tutor por 6 anos

Responder

To find the value of $\vert f(i)\vert$, we need to substitute $i$ into the function $f(x)$ and then take the absolute value.<br /><br />Given that $f(x) = 1 - x$, we can substitute $i$ into the function:<br /><br />$f(i) = 1 - i$<br /><br />Now, we need to find the absolute value of $f(i)$:<br /><br />$\vert f(i)\vert = \vert 1 - i\vert$<br /><br />To find the absolute value of a complex number, we can use the formula:<br /><br />$\vert a + bi\vert = \sqrt{a^2 + b^2}$<br /><br />In this case, $a = 1$ and $b = -1$. Substituting these values into the formula, we get:<br /><br />$\vert 1 - i\vert = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$<br /><br />Therefore, the value of $\vert f(i)\vert$ is $\sqrt{2}$.
Clique para avaliar: