Primeira página
/
Matemática
/
1. If f(x)=14-2x , find the value of x when f(x)=20 12. If g(x)=(1)/(2)x-7 , find the value of x when g(x)=2

Pergunta

1. If f(x)=14-2x , find the value of x
when f(x)=20
12. If g(x)=(1)/(2)x-7 , find the value of x
when g(x)=2

1. If f(x)=14-2x , find the value of x when f(x)=20 12. If g(x)=(1)/(2)x-7 , find the value of x when g(x)=2

Solução

expert verifiedVerification of experts
4.2295 Voting
avatar
Sara MariaProfissional · Tutor por 6 anos

Responder

Let's solve each problem step by step.<br /><br />1. For the function \( f(x) = 14 - 2x \), we need to find the value of \( x \) when \( f(x) = 20 \).<br /><br />\[ f(x) = 20 \]<br />\[ 14 - 2x = 20 \]<br /><br />Subtract 14 from both sides:<br /><br />\[ -2x = 20 - 14 \]<br />\[ -2x = 6 \]<br /><br />Divide both sides by -2:<br /><br />\[ x = \frac{6}{-2} \]<br />\[ x = -3 \]<br /><br />So, the value of \( x \) when \( f(x) = 20 \) is \( x = -3 \).<br /><br />2. For the function \( g(x) = \frac{1}{2}x - 7 \), we need to find the value of \( x \) when \( g(x) = 2 \).<br /><br />\[ g(x) = 2 \]<br />\[ \frac{1}{2}x - 7 = 2 \]<br /><br />Add 7 to both sides:<br /><br />\[ \frac{1}{2}x = 2 + 7 \]<br />\[ \frac{1}{2}x = 9 \]<br /><br />Multiply both sides by 2:<br /><br />\[ x = 9 \times 2 \]<br />\[ x = 18 \]<br /><br />So, the value of \( x \) when \( g(x) = 2 \) is \( x = 18 \).
Clique para avaliar: