Pergunta

Given f(x)=x-7 and g(x)=x^2 Find g(f(4)) g(f(4))=9 COMPLETE Find f(g(4)) f(g(4))=9 Find g(f(-1)) g(f(-1))=64 COMPLETE Find f(g(-1)) f(g(-1))=-6 COMPLETE Composition of the functions is square commutative. DONEM always sometimes
Solução

4.7189 Voting

Helena MariaProfissional · Tutor por 6 anos
Responder
To determine whether the composition of the functions \( f \) and \( g \) is commutative, we need to check if \( f(g(x)) = g(f(x)) \) for all \( x \).<br /><br />Given:<br />\[ f(x) = x - 7 \]<br />\[ g(x) = x^2 \]<br /><br />Let's compute \( f(g(x)) \) and \( g(f(x)) \):<br /><br />1. Compute \( f(g(x)) \):<br />\[ f(g(x)) = f(x^2) = (x^2) - 7 = x^2 - 7 \]<br /><br />2. Compute \( g(f(x)) \):<br />\[ g(f(x)) = g(x - 7) = (x - 7)^2 = x^2 - 14x + 49 \]<br /><br />Now, compare \( f(g(x)) \) and \( g(f(x)) \):<br />\[ f(g(x)) = x^2 - 7 \]<br />\[ g(f(x)) = x^2 - 14x + 49 \]<br /><br />Clearly, \( f(g(x)) \neq g(f(x)) \) for all \( x \). Therefore, the composition of the functions \( f \) and \( g \) is not commutative.<br /><br />So, the correct answer is:<br />\[ \text{sometimes} \]
Clique para avaliar: