Pergunta
(a) sqrt28+sqrt63+sqrt175 b. sqrt27-sqrt75+sqrt243 c. sqrt2(sqrt8+2sqrt2)
Solução
Verification of experts
4.4286 Voting
LeiaMestre · Tutor por 5 anos
Responder
a. \(10\sqrt{7}\) b. \(7\sqrt{3}\) c. 8</p><br /><p>
Explicação
<br />a. Untuk menyelesaikan \(\sqrt{28} + \sqrt{63} + \sqrt{175}\), kita dapat menyederhanakan setiap akar kuadrat:<br />\(\sqrt{28} = 2\sqrt{7}\)<br />\(\sqrt{63} = 3\sqrt{7}\)<br />\(\sqrt{175} = 5\sqrt{7}\)<br />Jadi, \(\sqrt{28} + \sqrt{63} + \sqrt{175} = 2\sqrt{7} + 3\sqrt{7} + 5\sqrt{7} = 10\sqrt{7}\).<br /><br />b. Untuk menyelesaikan \(\sqrt{27} - \sqrt{75} + \sqrt{243}\), kita dapat menyederhanakan setiap akar kuadrat:<br />\(\sqrt{27} = 3\sqrt{3}\)<br />\(\sqrt{75} = 5\sqrt{3}\)<br />\(\sqrt{243} = 9\sqrt{3}\)<br />Jadi, \(\sqrt{27} - \sqrt{75} + \sqrt{243} = 3\sqrt{3} - 5\sqrt{3} + 9\sqrt{3} = 7\sqrt{3}\).<br /><br />c. Untuk menyelesaikan \(\sqrt{2}(\sqrt{8} + 2\sqrt{2})\), kita dapat menyederhanakan akar kuadrat:<br />\(\sqrt{8} = 2\sqrt{2}\)<br />Jadi, \(\sqrt{2}(\sqrt{8} + 2\sqrt{2}) = \sqrt{2}(2\sqrt{2} + 2\sqrt{2}) = 8\).<br /></p>
Clique para avaliar: