Pergunta

Perform the indicated operation. ((7x-5)^5)/((7x-5)^3) ((7x-5)^5)/((7x-5)^3)= square
Solução

4.7294 Voting

TatianaVeterano · Tutor por 10 anos
Responder
To perform the indicated operation, we need to simplify the expression:<br /><br />\[<br />\frac{(7x-5)^5}{(7x-5)^3}<br />\]<br /><br />We can use the properties of exponents to simplify this. Specifically, we use the rule that states:<br /><br />\[<br />\frac{a^m}{a^n} = a^{m-n}<br />\]<br /><br />In this case, \(a = 7x - 5\), \(m = 5\), and \(n = 3\). Applying the rule, we get:<br /><br />\[<br />\frac{(7x-5)^5}{(7x-5)^3} = (7x-5)^{5-3} = (7x-5)^2<br />\]<br /><br />Therefore, the simplified form of the given expression is:<br /><br />\[<br />(7x-5)^2<br />\]<br /><br />So,<br /><br />\[<br />\frac{(7x-5)^5}{(7x-5)^3} = (7x-5)^2<br />\]
Clique para avaliar: