Primeira página
/
Matemática
/
Which of the following is equivalent to -2i(6-7i) √ (0-2i)(6-7i) (0+2i)(6-7i) (-2+i)(6-7i) (6-2i)-(7i-2i) Study the work shown below and compare the results to the product of -2i(6-7i) (0-2i)(6-7i) =(0)(6)+(0)(-7i)+(-2i)(6)+(-2i)(-7i) =0+0-12i+14i^2 =-12i-14 =-14-12i The products are square DONE V different equal

Pergunta

Which of the following is equivalent to -2i(6-7i)
√ (0-2i)(6-7i)
(0+2i)(6-7i)
(-2+i)(6-7i)
(6-2i)-(7i-2i)
Study the work shown below and compare the
results to the product of -2i(6-7i)
(0-2i)(6-7i)
=(0)(6)+(0)(-7i)+(-2i)(6)+(-2i)(-7i)
=0+0-12i+14i^2
=-12i-14
=-14-12i
The products are
square 
DONE V
different
equal

Which of the following is equivalent to -2i(6-7i) √ (0-2i)(6-7i) (0+2i)(6-7i) (-2+i)(6-7i) (6-2i)-(7i-2i) Study the work shown below and compare the results to the product of -2i(6-7i) (0-2i)(6-7i) =(0)(6)+(0)(-7i)+(-2i)(6)+(-2i)(-7i) =0+0-12i+14i^2 =-12i-14 =-14-12i The products are square DONE V different equal

Solução

expert verifiedVerification of experts
4.2293 Voting
avatar
GuilhermeProfissional · Tutor por 6 anos

Responder

To find the equivalent expression for $-2i(6-7i)$, we can use the distributive property to expand the expression:<br /><br />$-2i(6-7i) = -2i \cdot 6 - 2i \cdot (-7i)$<br /><br />Simplifying the expression, we have:<br /><br />$-2i \cdot 6 = -12i$<br /><br />$-2i \cdot (-7i) = 14i^2$<br /><br />Since $i^2 = -1$, we can substitute $-1$ for $i^2$:<br /><br />$14i^2 = 14(-1) = -14$<br /><br />Therefore, the expression simplifies to:<br /><br />$-2i(6-7i) = -12i - 14$<br /><br />Comparing this result to the given options, we can see that the correct answer is:<br /><br />$\boxed{\text{equal}}$<br /><br />The other options are not equivalent to $-2i(6-7i)$.
Clique para avaliar: