Primeira página
/
Matemática
/
h(x)=x^2+1 k(x)=x-2 (h+k)(2)= square (h-k)(3)= square Evaluate 3h(2)+2k(3)= square

Pergunta

h(x)=x^2+1 k(x)=x-2
(h+k)(2)= square 
(h-k)(3)= square 
Evaluate 3h(2)+2k(3)= square

h(x)=x^2+1 k(x)=x-2 (h+k)(2)= square (h-k)(3)= square Evaluate 3h(2)+2k(3)= square

Solução

expert verifiedVerification of experts
4.0218 Voting
avatar
GeisaMestre · Tutor por 5 anos

Responder

Let's evaluate each expression step by step.<br /><br />First, we need to find \( h(2) \) and \( k(2) \):<br />\[ h(x) = x^2 + 1 \]<br />\[ k(x) = x - 2 \]<br /><br />So,<br />\[ h(2) = 2^2 + 1 = 4 + 1 = 5 \]<br />\[ k(2) = 2 - 2 = 0 \]<br /><br />Now, we can evaluate \((h + k)(2)\):<br />\[ (h + k)(2) = h(2) + k(2) = 5 + 0 = 5 \]<br /><br />Next, we need to find \( h(3) \) and \( k(3) \):<br />\[ h(3) = 3^2 + 1 = 9 + 1 = 10 \]<br />\[ k(3) = 3 - 2 = 1 \]<br /><br />Now, we can evaluate \((h - k)(3)\):<br />\[ (h - k)(3) = h(3) - k(3) = 10 - 1 = 9 \]<br /><br />Finally, we evaluate \( 3h(2) + 2k(3) \):<br />\[ 3h(2) = 3 \times 5 = 15 \]<br />\[ 2k(3) = 2 \times 1 = 2 \]<br />\[ 3h(2) + 2k(3) = 15 + 2 = 17 \]<br /><br />So, the final answers are:<br />\[ (h + k)(2) = 5 \]<br />\[ (h - k)(3) = 9 \]<br />\[ 3h(2) + 2k(3) = 17 \]
Clique para avaliar: