Pergunta

Perform the indicated operations. Write the resulting polynomial in standard form and indicate its degree. (7x^2+8x-1)-(2x^2-5x)-(-7x^3-4x^2+1) (7x^2+8x-1)-(2x^2-5x)-(-7x^3-4x^2+1)=square (Simplify your answer.Type your answer in standard form.) The degree of the resulting polynomial is square (Type a whole number.)
Solução

4.5222 Voting

MateusAvançado · Tutor por 1 anos
Responder
To perform the indicated operations and simplify the polynomial, we need to distribute the negative signs and combine like terms.<br /><br />Given:<br />\[<br />(7x^2 + 8x - 1) - (2x^2 - 5x) - (-7x^3 - 4x^2 + 1)<br />\]<br /><br />First, distribute the negative signs:<br />\[<br />(7x^2 + 8x - 1) - 2x^2 + 5x + 7x^3 + 4x^2 - 1<br />\]<br /><br />Next, combine like terms:<br />- Combine the \(x^3\) terms: \(7x^3\)<br />- Combine the \(x^2\) terms: \(7x^2 - 2x^2 + 4x^2 = 9x^2\)<br />- Combine the \(x\) terms: \(8x + 5x = 13x\)<br />- Combine the constant terms: \(-1 - 1 = -2\)<br /><br />So, the resulting polynomial in standard form is:<br />\[<br />7x^3 + 9x^2 + 13x - 2<br />\]<br /><br />The degree of the resulting polynomial is the highest power of \(x\), which is 3.<br /><br />Thus, the simplified polynomial is:<br />\[<br />7x^3 + 9x^2 + 13x - 2<br />\]<br /><br />And the degree of the resulting polynomial is:<br />\[<br />3<br />\]
Clique para avaliar: