Primeira página
/
Matemática
/
2 e expoentes fracionários. a) sqrt (7) b) sqrt [4](2^1) c) sqrt [3](3^3) d) sqrt [5](a^5) square e) sqrt [3](x^2) square (1)/(sqrt (3)) square 3 Calcule (para a, b, xey nǎc negativos): a) sqrt (4a^2) square b) sqrt (36a^2b^6) square c) sqrt ((4)/(9)a^2b^4) square d) sqrt ((x^2)/(100)) square sqrt ((16a^n)/(25)) square f) sqrt [4](100x^2) square 9) sqrt (121) square h) sqrt [5](1024x^5y^10) square sqrt [4]((1)/(25)) square

Pergunta

2 e expoentes fracionários.
a) sqrt (7)
b) sqrt [4](2^1)
c) sqrt [3](3^3)
d) sqrt [5](a^5)
square 
e) sqrt [3](x^2)
square 
(1)/(sqrt (3))
square 
3 Calcule (para a, b, xey nǎc negativos):
a) sqrt (4a^2)
square 
b) sqrt (36a^2b^6)
square 
c) sqrt ((4)/(9)a^2b^4)
square 
d) sqrt ((x^2)/(100))
square 
sqrt ((16a^n)/(25))
square 
f) sqrt [4](100x^2)
square 
9) sqrt (121)
square 
h) sqrt [5](1024x^5y^10)
square 
sqrt [4]((1)/(25))
square

2 e expoentes fracionários. a) sqrt (7) b) sqrt [4](2^1) c) sqrt [3](3^3) d) sqrt [5](a^5) square e) sqrt [3](x^2) square (1)/(sqrt (3)) square 3 Calcule (para a, b, xey nǎc negativos): a) sqrt (4a^2) square b) sqrt (36a^2b^6) square c) sqrt ((4)/(9)a^2b^4) square d) sqrt ((x^2)/(100)) square sqrt ((16a^n)/(25)) square f) sqrt [4](100x^2) square 9) sqrt (121) square h) sqrt [5](1024x^5y^10) square sqrt [4]((1)/(25)) square

Solução

expert verifiedVerification of experts
4.2291 Voting
avatar
AmáliaAvançado · Tutor por 1 anos

Responder

2 expoente fracionários:<br />a) $\sqrt {7}$<br />b) $\sqrt [4]{2^{1}}$<br />c) $\sqrt [3]{3^{3}}$<br />d) $\sqrt [5]{a^{5}}$<br />e) $\sqrt [3]{x^{2}}$<br />f) $\frac {1}{\sqrt {3}}$<br /><br />3 Calcule (para a, b, x e y não negativos):<br />a) $\sqrt {4a^{2}} = 2a$<br />b) $\sqrt {36a^{2}b^{6}} = 6ab^{3}$<br />c) $\sqrt {\frac {4}{9}a^{2}b^{4}} = \frac {2}{3}ab^{2}$<br />d) $\sqrt {\frac {x^{2}}{100}} = \frac {x}{10}$<br />e) $\sqrt {\frac {16a^{n}}{25}} = \frac {4a^{n/2}}{5}$<br />f) $\sqrt [4]{100x^{2}} = 10x^{1/2}$<br />g) $\sqrt {121} = 11$<br />h) $\sqrt [5]{1024x^{5}y^{10}} = 32xy^{2}$<br />i) $\sqrt [4]{\frac {1}{25}} = \frac {1}{5}$
Clique para avaliar: