Pergunta
)/(3)
f^-1(x)=(x^3)/(3)
f^-1(x)=sqrt [3](((x)/(3)))
f^-1(x)=sqrt [3]((3x))](https://static.questionai.br.com/resource%2Fqaiseoimg%2F202502%2Ffunction-fx3x3-find-f1xanswerf1xsqrt-3x3f1xx33f1xsqrt-tNZXV31pwE0d.jpg?x-oss-process=image/resize,w_558,h_500/quality,q_35/format,webp)
For the function f(x)=(3x)^3 find f^-1(x) Answer f^-1(x)=(sqrt [3](x))/(3) f^-1(x)=(x^3)/(3) f^-1(x)=sqrt [3](((x)/(3))) f^-1(x)=sqrt [3]((3x))
Solução

4.2247 Voting

GlóriaProfissional · Tutor por 6 anos
Responder
To find the inverse function $f^{-1}(x)$, we need to solve for $x$ in terms of $y$ where $y = f(x)$.<br /><br />Given the function $f(x) = (3x)^3$, we can rewrite it as $y = (3x)^3$.<br /><br />Now, let's solve for $x$ in terms of $y$:<br /><br />$y = (3x)^3$<br />$y = 27x^3$<br />$x = \sqrt[3]{\frac{y}{27}}$<br />$x = \frac{\sqrt[3]{y}}{3}$<br /><br />Therefore, the inverse function $f^{-1}(x)$ is:<br /><br />$f^{-1}(x) = \frac{\sqrt[3]{x}}{3}$<br /><br />So, the correct answer is:<br /><br />$f^{-1}(x) = \frac{\sqrt[3]{x}}{3}$
Clique para avaliar: