Pergunta

Rewrite the expression by factoring out (v-6) 5v^2(v-6)-7(v-6) square square
Solução

4.2326 Voting

JorgeMestre · Tutor por 5 anos
Responder
To factor out \((v-6)\) from the expression \(5v^{2}(v-6)-7(v-6)\), we can follow these steps:<br /><br />1. Identify the common factor in both terms, which is \((v-6)\).<br />2. Factor out \((v-6)\) from each term.<br /><br />The expression is:<br />\[ 5v^{2}(v-6) - 7(v-6) \]<br /><br />We can factor out \((v-6)\) from both terms:<br />\[ (v-6)(5v^{2}) - (v-6)(7) \]<br /><br />Now, combine the factored terms:<br />\[ (v-6)(5v^{2} - 7) \]<br /><br />So, the rewritten expression by factoring out \((v-6)\) is:<br />\[ (v-6)(5v^{2} - 7) \]
Clique para avaliar: