Primeira página
/
Matemática
/
for the function f(x)=5x-10 find f^-1(x) Answer f^-1(x)=5(x+10) f^-1(x)=(x)/(5)-10 f^-1(x)=5x+10 f^-1(x)=((x+10))/(5)

Pergunta

for the function f(x)=5x-10 find f^-1(x)
Answer
f^-1(x)=5(x+10)
f^-1(x)=(x)/(5)-10
f^-1(x)=5x+10
f^-1(x)=((x+10))/(5)

for the function f(x)=5x-10 find f^-1(x) Answer f^-1(x)=5(x+10) f^-1(x)=(x)/(5)-10 f^-1(x)=5x+10 f^-1(x)=((x+10))/(5)

Solução

expert verifiedVerification of experts
4.4321 Voting
avatar
FernandaElite · Tutor por 8 anos

Responder

To find the inverse function $f^{-1}(x)$, we need to swap the roles of $x$ and $y$ in the original function and solve for $y$.<br /><br />Given the function $f(x) = 5x - 10$, we can rewrite it as $y = 5x - 10$.<br /><br />Now, let's swap the roles of $x$ and $y$:<br />$x = 5y - 10$<br /><br />Next, we solve for $y$:<br />$x + 10 = 5y$<br />$y = \frac{x + 10}{5}$<br /><br />Therefore, the inverse function is $f^{-1}(x) = \frac{x + 10}{5}$.<br /><br />So, the correct answer is:<br />$f^{-1}(x) = \frac{x + 10}{5}$
Clique para avaliar: